Departrment of Flectrical & ECE 150 Fundamentals of Programming

?mputer Engineering
-

@ UNIVERSITY OF WATERLOO ‘ .

‘s

Douglas Wilhelm Harder, M.Math.
Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.
Some rights reserved.

UNIVERSITY OF WATERLO@ "~
FACULEY OF ENGINEERING
2 Depapfment of Electrical &

" Computer Engineering

.

Outline

e In thislesson, we will:
— See the need for asking if more than one condition is satisfied
 The unit pulse function
— Describe the binary logical AND and OR operators
— Introduce truth tables
— Describe chaining numerous logical expressions
— Describe short-circuit evaluation
— Describe the unary logical negation (NOT)

UNIVERSITY OF WATERLO@ =
FACULEY OF ENGINEERING

Department of Electrical &
" Computer Engineering

*

Background

« We have seen six comparison operators
< {= == >= >

* Problem:
— What if more than one condition is required?
— What if two conditions result in the same consequent?
— What if we require that a condition must be false?

The unit pulse

* Suppose we want to implement the function:

0 X <0

def % x=0
unit(x)=<1 x>0andx<1

> Xx=1

0 X>1

« This function has an integral (area under the curve) equal to 1

1

UNIVERSITY OF WATERLO®@
FACULEY OF ENGINEERING
Deparfment of Electrical &

L Computer Engineering

“

The unit pulse

* We could implement this program as follows:

#tinclude <iostream>

// Function declarations
int main();

// Function definitions
int main() {

p
double x{}; 0 x<0
std::cout << "Enter a number: "; 1
std::cin >> x; 2> X=O
) def
if (x<0.0) unit(x)=41 x>0andx<1
std::cout << 0.0 << std::endl; 1
} else if (x == 0.0) { B X:].
std::cout << 0.5 << std::endl;
} else if (x < 1.0) { L0 X>1

std::cout << 1.0 << std::endl;
} else if (x == 1.0) {

std::cout << 0.5 << std::endl;
} else {

std::cout << 0.0 << std::endl;

}

return 0;

@ of Electrica
% Computer Engineering

.

The unit pulse

« Can we implement this cascading conditional statement using only
two conditions?

. s 0 X <0

if (condition-1) {)
std::cout << 0.0 << std::endl; def | 2 x=0

} else if (condition-2) { unit(x)=<1 x>0andx<1
std::cout << 0.5 << std::endl; = X=1

b else { 0 X >1

std::cout << 1.0 << std::endl;
}

* In English, we would simply say that we should print
0 ifeitherx<OORX>1
Y% ifeitherx=00RXx=1
1 otherwise

@ of Electrica
% Computer Engineering

.

The unit pulse

« Alternatively, could we swap the first consequent block and the
alternative?

. L 0 X <0

if (condition-1) {)
std::cout << 1.0 << std::endl; wof |2 x=0

} else if (condition-2) { unit(x)=41 x>0andx<1
std::cout << 0.5 << std::endl; = X=1

} else { 0 x> 1
std::cout << 0.0 << std::endl;

}

* In English, we would simply say that we should print
1 ifbothx>0ANDX<1
Y% ifeitherx=00RXx=1
0 otherwise

@ FACU
Depar
% Computer Engin

Logical operators

« In C++, there are two binary logical operators
— They take two Boolean-valued operands and return a Boolean value

« The OR operator | | returns true if either operands is true
« The AND operator && returns true if both operands are true

Consequent Conditions C++
0.0 X<0 or x>1 (x < 9.0) || (x > 1.0)
0.5 X=0 OrR x=1 (x == 0.9) || (x == 1.0)

1.0 x>0 AND x<1 (x > 0.0) && (x < 1.0)

Computer Engineering

Logical operators

Thus, we may implement this as follows:
if ((x < 0.9) || (x> 1.0)) {

std::cout << 0.0 << std::
0.0) || (x
std::cout << 0.5 << std::
} else {
std::cout << 1.0 << std::

} else if ((x

if ((x > 0.0) & (x < 1.0)
std::cout << 1.0 << std::
0.0) || (x
std::cout << 0.5 << std::
} else {
std::cout << 0.0 << std::

} else if ((x

endl;

== 1.0)) {

endl;

endl;

) o
endl;

== 1.0)

endl;

endl;

UNIVERSITY OF WATERLO@
FACULLY OF ENGINEERING
Depagtment of Electrical &

Computer Engineering

.

Maximum of three

* We can now implement a maximum of three values
— Given x, y and z,

« Ifx>yand x>z, max(Xx, Y, Z) = X
* Otherwise, ify >z, max(x, Yy, z) =y
« Otherwise, max(x, Y, z) = z

We could also describe this as:
— Given x, y and z,

« Ifx>yand x>z, max(x, Y, z) = X
» Otherwise, ify > z, max(x, Yy, z) =y
« Otherwise, max(x, Y, z) = z

— Both are correct, but the first gets us, in some cases, to our answer
quicker

UNIVERSITY OF WATERLO®@
FACULEY OF ENGINEERING
Deparfment of Electrical &

L Computer Engineering

“

Maximum of three

* We could implement this program as follows:
#include <iostream>

// Function declarations
int main();

// Function definitions
int main() {
double x{};
double y{};
double z{};
std::cout << "Enter a value 'x': ";
std::cin >> Xx;
std::cout << "Enter a value 'y': ";
std::cin >> y;

std::cout << "Enter a value 'z': ";
std::cin >> z;

W UNIVERSITY OF WATERLO®
Y2\ FACULEY OF ENGINEERIN

v Department of Electrical &
W Computer Engineering

.

Maximum of three

* We could implement this program as follows:

if (((x >=y) & (x >=2z)) {
std::cout << "max(x, y, z)
} else if (y >=z) {
std::cout << "max(x, y, z)
} else {
std::cout << "max(x, y, z)

" << X << std::endl;

" << y << std::endl;

" << z << std::endl;

}

return 0;

@ UNIVERSITY OF WATERLO@ =
De| Ignent of Electrical &
- ter Engineering

Truth tables

« The logical OR operator | | is true if either operand is true
— Itis false if both operands are false

» The logical AND operator && is true if both operand are true
— Itis false if either operands is false

« To display this visually, we use a truth table

L Computer Engineering

UNIVERSITY OF WATERLO@
FACULEY OF ENGINEERING
Depagtment of Electrical &

.

Truth tables

« In elementary school, you saw addition and multiplication tables:
— Given two operands, the table gave the result of the operation

+ 0 1 2 3 4 5 6 7 8 9 X 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 0 0 0 0
1 1 2 3 4 5 6 7 8 9 10 1 0 1 2 3 4 5 6 7 8 9
2 2 3 4 5 6 7 8 9 10 11 2 0 2 4 6 8 10 12 14 16 18
3 3 4 5 6 7 8 9 10 11 12 3 0 3 6 9 12 15 18 21 24 27
4 4 5 6 7 8 9 10 11 12 13 4 0 4 8 12 16 20 24 28 32 36
5 5 6 7 8 9 10 11 12 13 14 5 0 5 10 15 20 25 30 35 40 45
6 6 7 8 9 10 11 12 13 14 15 6 0 6 12 18 24 30 36 42 48 54
7 7 8 9 10 11 12 13 14 15 16 7 0 7 14 21 28 35 42 49 56 63
8 8 9 10 11 12 13 14 15 16 17 8 0 8 16 24 32 40 48 56 64 72
9 9 10 11 12 13 14 15 16 17 18 9 0 9 18 27 36 45 54 63 72 81

UNIVERSITY OF WATERLO®@
FACULEY OF ENGINEERING
Deparfment of Electrical &

Truth tables

« With only two possible values of the operands, these truth tables are
much simpler:

X && vy Y
true false
true true false
X
false | false false

x 11y ’
true false
true true true
false | true false

UNIVERSITY OF WATERLO®@
FACULEY OF ENGINEERING
Department of Electrical &

» . Computer Engineering

.

Truth tables

* An alternate form is to consider all values of the operands:

X y X && 'y x ||y
true true true true
true false false true
false false false false
false true false true

UNIVERSITY OF WATERLO@
FACUIihY OF ENGINEERING
Department of Electrical &

Computer Engineering

-

Logical expressions

« We have seen that the condition of a logical statement may be:
1. A comparison operation, or
2. Two comparison operations joined by && or | |

« More generally, a logical expression may be:
1. The Boolean literals true or false,
2. A local variable of type bool,
3. A comparison operation, or
4. Two logical expressions joined by && or | |

" Computer Engineering

UNIVERSITY OF WATERLO@ "~
FACULEY OF ENGINEERING
2 Depagtment of Electrical &

.

Logical expressions

* For example, our prograin may have:
bool is valid{true};
bool is found{false};
double x{};
double y{}
double z{};

// Do something...

if (is_valid || ((((x > 3) & (x < 12.5)) || (y < z)) && is_found)) {
// Do something specific to this condition

« In general, it will never be this complicated,
but it is just like an arithmetic expression:

u=a*((b + c)*d + e);

UNIVERSITY OF WATERLO@ "~
FACUI#HY OF ENGINEERING i
Deparfment of Electrical &

L Computer Engineering . K

.

Logical expressions

» If there are many conditions that must be true,

you can string these together with &&:
if ((w > 0.0) & (x > 0.0) && (y > 0.0) && (z > 90.0)) {
// Do something specific to this condition

}

» If there are many conditions of which only one need be true,

you can string these together with | |:
if ((w>0.0) || (x >0.0) || (y>0.0) || (z>0.0)) {
// Do something specific to this condition

}

@ = ent of Electrica
% Computer Engineering

-

Logical expressions

« If you are mixing such conditions, use parentheses to be clear:
if (((x > 0.0) & (x < 1.0)) || ((y > 0.0) && (y < 1.0))) {
// Do something specific to this condition

}

» There is an order-of-operations for logical operations, but
— Most people don’t intuitively remember them
— You may get it wrong...

 Please, just use parentheses always when mixing | | and &&

FACU

Multiple conditions

« For example, consider:
(x == 0) || (x <= 2) && (x >= 1)

* Does this mean:
(x == 0) || ((x <= 2) && (x >= 1))
or
((x ==0) || (x <= 2)) & (x >= 1)

— The first is true if x is 0 or x is in the closed interval [1, 2]
— The second is true only if x is in the closed interval [1, 2]

UNIVERSITY OF WATERLO®@
FACULEY OF ENGINEERING
Deparfment of Electrical &

L Computer Engineering

“

Logical expressions

* For example, our prograin may have:
int main() {
bool has_fever{};
bool has_dry_cough{};
bool is_tired{};
bool has_serious_symptom{};

std::cout << "Do you have a fever?" << std::endl;
std::cout << "Enter 1 (yes) or @ (no): ";
std::cin >> has_fever;

std::cout << "Do you have a dry cough?" << std::endl;
std::cout << "Enter 1 (yes) or @ (no): ";
std::cin >> has_dry_cough;

std::cout << "Are you more tired than usual?" << std::endl;
std::cout << "Enter 1 (yes) or @ (no): ";
std::cin >> is_tired;

FACULEY OF ENGINEERING
Department of Electrical &

@ UNIVERSITY OF WATERLO@ =

" Computer Engineering

*

std:
std:
std:
std:
std:

std

if(

:cout
:cout
:cout
:cout
:cout

<<
<<
<<
<<
<<

Logical expressions

"Do you have any of:" << std::endl;
"\tdifficulty breating," << std::endl;
"\tchest pains, or" << std::endl;

"\tloss of speech or movement?" << std::endl;
"Enter 1 (yes) or @ (no): ";

::cin >> has_serious_symptom;

has_serious_symptom || (has_fever && has_dry cough && is_tired)) {

std::cout << "Get medical help now.

<< std::endl;

} else if (has_fever || has_dry cough || is_tired) {

std::cout << "Please self-isolate for two weeks and "

} else {
std::cout << "You can go out, but wear a mask." << std::endl;

return 0;

<< "seek medical help if the symptoms get worse."
<< std::endl;

o
UNIVERSITY OF WATERLO@ "~ ! p f
FACUIinY OF ENGINEERING . -

2 Depagfment o‘F_ Electrical &

" Computer Engineering

.

Short-circuit evaluation

* C++ produces code that does the minimum work necessary:
— Suppose you wonder: Is the speaker taller than 6’ and stupid?
* Itell you I'm 180 cm

— Instead, you may wonder: Does the speaker drink coffee or drink
tea?

* Itell you I drink coffee

@ = ent of Electrica
% Computer Engineering

-

Short-circuit evaluation

* Consider these logical expressions:
(x < -10) || (x > 10)
(x < -10) || ((x > -1) && (x < 1)) || (x > 10)

» Suppose that 'x' has the value -100
— The first comparison operation returns true

— Isthereis any reason to even bother testing the others?
« No: theresult of true || any-other-conditions must be true

— This is referred to as short-circuit evaluation

Computer Engin

UNIVERSITY OF WATER 00

FACU

Depar i /
- $

Short-circuit evaluation

* Consider these logical expressions:
(x < -10) || (x > 10)
(x < -10) || ((x > -1) && (x < 1)) || (x > 10)

* Suppose that 'x' has the value 0
— The first condition is false, and

 In the first example, (x > 10) is false and it is the last condition,
so the expression is false

* In the second example, ((x > -1) & (x < 1)) is true, so the
entire logical expression is true

— There is no need at this point to evaluate (x > 10)
— Even though it is false, the entire expression is still true

@ of Electrica
% Computer Engineering

.

Short-circuit evaluation

« Similarly, consider
(x > -10) && (x < 10)
(x > -10) && ((x < -1) || (x > 1)) && (x < 10)

» Suppose that 'x' has the value -100
— The first comparison operation returns false

— Is there any reason to even bother testing the others?

« No: the result of false && any-other-conditions must be
false

UNIVERSITY OF WATER 00

FACU

Depar i /
- $

Computer Engin

Short-circuit evaluation

« Similarly, consider
(x > -10) && (x < 10)
(x > -10) && ((x < -1) || (x > 1)) && (x < 10)

* Suppose that 'x' has the value 0
— The first condition is true, and

 In the first example, (x < 10) is true and it is the last condition,
so the expression is true

 In the second example, ((x < -1) || (x > 1)) is false, so the
entire logical expression is false

— There is no need at this point to evaluate (x < 10)
— Even though it is true, the entire expression is still false

UNIVERSITY OF WATERLO@ =
FACULEY OF ENGINEERING
Department of E\ec_trical &

Computer Engineering

-

Short-circuit evaluation

» Suppose that x is a local variable:

if (((x >= -1.0) && (x <= 1.9)) || (x » 10.0) || (x < -10.0)) {
std::cout << "true" << std::endl;

} else {
std::cout << "false" << std::endl;

}

if ((x < -10.0) || (x > 10.0) || ((x <= 1.0) & & (x >= -1.0))) {
std::cout << "true" << std::endl;

} else {
std::cout << "false" << std::endl;

}

* When do they stop evaluating the local variable x equals:
-12 -5 -1 7 15

UNIVERSITY OF WATERLO@ =
FACULEY OF ENGINEERING

Department of Electrical &
" Computer Engineering

*

Logical negation

« Ifalogical expression is true, its negation is false, and vice versa

— The unary NOT operator
X I'x
true false
false true

» Consider, for example
if ((x > 09) & (x < 10)) {
std::cout << "'x' is in the open interval (0, 10)" << std::endl;

if (1((x > 09) & (x < 10))) {

std::cout << "'x' is not in the open interval (0, 10)" << std::endl;

UNIVERSITY OF WATERLO®@
FACULEY OF ENGINEERING
Deparfment of Electrical &

L Computer Engineering

“

Logical negation

 Note that all three are the same:
if (1((x > 0) & (x < 108))) {

std::cout << "'x"' is not in the open interval (0, 10)" << std::endl;

if ((M(x >0) || '(x<10))) {

std::cout << "'x"' is not in the open interval (0, 10)" << std::endl;

if (((x<=0) || (x >=10)) {

std::cout << "'x"' is not in the open interval (@0, 10)" << std::endl;

UNIVERSITY OF WATERLO®@
FACULEY OF ENGINEERING
Deparfment of Electrical &

Logical negation

» The following Boolean-valued statements are equivalent®:

(x !'=1) I'(x == 1)
(x > 0) I (x <=)
(x >= -1) && (x <= 1) F((x < -1) || (x > 1))

1If the operands are the same, the result is the same.

W UNIVERSITY OF WATERLO®
@ FACULEY OF ENGINEERIN:

Departfment of Electrical &

.

Logical negation

» The behavior of these two conditional statements are equivalent:

if (some-condition) {
// Do something
} else {
// Do something completely different

if (!some-condition) {
// Do something completely different

} else {
// Do something

@ ol :
! Computer Engineering

Summary

« Following this lesson, you now:
— Understand that two or more conditions can be chained together
« With a logical AND (&&), all must be true for the result to be true
« With alogical oR (| |), one must be true for the result to be true
— Are familiarized with truth tables
— Understand the idea of short-circuit evaluation

» As soon as one condition is false in a chain of logical ANDs, we’re
done: the result must be false

* As soon as one condition is true in a chain of logical ORs, we're
done: the result must be true

— Understand that logical negation switches between true and false

W UNIVERSITY OF WATERLO®
AS FACULEY OF ENGINEERINI

y Department of Electrical &
- Computer Engineering

References

[1] No references?

W UNIVERSITY OF WATERLO®@
A§ FACULJ'Y OF ENGINEERING:

Acknowledgements

e None so far.

UNIVERSITY OF WATERLO@ =
FACULEY OF ENGINEERING

Department of Electrical &
" Computer Engineering

*

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/
for more information.

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

