
ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Logical operators

2
Logical operators

Outline

• In this lesson, we will:

– See the need for asking if more than one condition is satisfied

• The unit pulse function

– Describe the binary logical AND and OR operators

– Introduce truth tables

– Describe chaining numerous logical expressions

– Describe short-circuit evaluation

– Describe the unary logical negation (NOT)

3
Logical operators

Background

• We have seen six comparison operators

< <= == >= >

!=

• Problem:

– What if more than one condition is required?

– What if two conditions result in the same consequent?

– What if we require that a condition must be false?

4
Logical operators

The unit pulse

• Suppose we want to implement the function:

• This function has an integral (area under the curve) equal to 1

 

1

2
def

1

2

0 0

0

unit 1 0 and 1

1

0 1

x

x

x x x

x

x







  
 




5
Logical operators

The unit pulse

• We could implement this program as follows:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

double x{};

std::cout << "Enter a number: ";

std::cin >> x;

if (x < 0.0) {

std::cout << 0.0 << std::endl;

} else if (x == 0.0) {

std::cout << 0.5 << std::endl;

} else if (x < 1.0) {

std::cout << 1.0 << std::endl;

} else if (x == 1.0) {

std::cout << 0.5 << std::endl;

} else {

std::cout << 0.0 << std::endl;

}

return 0;

}

 

1

2
def

1

2

0 0

0

unit 1 0 and 1

1

0 1

x

x

x x x

x

x







  
 




6
Logical operators

The unit pulse

• Can we implement this cascading conditional statement using only

two conditions?

if (condition-1) {

std::cout << 0.0 << std::endl;

} else if (condition-2) {

std::cout << 0.5 << std::endl;

} else {

std::cout << 1.0 << std::endl;

}

• In English, we would simply say that we should print

0 if either x < 0 OR x > 1

½ if either x = 0 OR x = 1

1 otherwise

 

1

2
def

1

2

0 0

0

unit 1 0 and 1

1

0 1

x

x

x x x

x

x







  
 




7
Logical operators

The unit pulse

• Alternatively, could we swap the first consequent block and the

alternative?

if (condition-1) {

std::cout << 1.0 << std::endl;

} else if (condition-2) {

std::cout << 0.5 << std::endl;

} else {

std::cout << 0.0 << std::endl;

}

• In English, we would simply say that we should print

1 if both x > 0 AND x < 1

½ if either x = 0 OR x = 1

0 otherwise

 

1

2
def

1

2

0 0

0

unit 1 0 and 1

1

0 1

x

x

x x x

x

x







  
 




8
Logical operators

• In C++, there are two binary logical operators

– They take two Boolean-valued operands and return a Boolean value

• The OR operator || returns true if either operands is true

• The AND operator && returns true if both operands are true

Logical operators

Consequent Conditions C++

0.0 OR (x < 0.0) || (x > 1.0)

0.5 OR (x == 0.0) || (x == 1.0)

1.0 AND (x > 0.0) && (x < 1.0)

0x  1x 

0x  1x 

0x  1x 

9
Logical operators

Logical operators

• Thus, we may implement this as follows:

if ((x < 0.0) || (x > 1.0)) {

std::cout << 0.0 << std::endl;

} else if ((x == 0.0) || (x == 1.0)) {

std::cout << 0.5 << std::endl;

} else {

std::cout << 1.0 << std::endl;

}

if ((x > 0.0) && (x < 1.0)) {

std::cout << 1.0 << std::endl;

} else if ((x == 0.0) || (x == 1.0)) {

std::cout << 0.5 << std::endl;

} else {

std::cout << 0.0 << std::endl;

}

10
Logical operators

Maximum of three

• We can now implement a maximum of three values

– Given x, y and z,

• If x ≥ y and x ≥ z, max(x, y, z) = x

• Otherwise, if y ≥ z, max(x, y, z) = y

• Otherwise, max(x, y, z) = z

• We could also describe this as:

– Given x, y and z,

• If x > y and x > z, max(x, y, z) = x

• Otherwise, if y > z, max(x, y, z) = y

• Otherwise, max(x, y, z) = z

– Both are correct, but the first gets us, in some cases, to our answer
quicker

11
Logical operators

Maximum of three

• We could implement this program as follows:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

double x{};

double y{};

double z{};

std::cout << "Enter a value 'x': ";

std::cin >> x;

std::cout << "Enter a value 'y': ";

std::cin >> y;

std::cout << "Enter a value 'z': ";

std::cin >> z;

12
Logical operators

Maximum of three

• We could implement this program as follows:

if ((x >= y) && (x >= z)) {

std::cout << "max(x, y, z) = " << x << std::endl;

} else if (y >= z) {

std::cout << "max(x, y, z) = " << y << std::endl;

} else {

std::cout << "max(x, y, z) = " << z << std::endl;

}

return 0;

}

13
Logical operators

Truth tables

• The logical OR operator || is true if either operand is true

– It is false if both operands are false

• The logical AND operator && is true if both operand are true

– It is false if either operands is false

• To display this visually, we use a truth table

14
Logical operators

Truth tables

• In elementary school, you saw addition and multiplication tables:

– Given two operands, the table gave the result of the operation

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18

× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 32 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

15
Logical operators

Truth tables

• With only two possible values of the operands, these truth tables are
much simpler:

x && y
y

true false

x
true true false

false false false

x || y
y

true false

x
true true true

false true false

16
Logical operators

Truth tables

• An alternate form is to consider all values of the operands:

x y x && y x || y

true true true true

true false false true

false false false false

false true false true

17
Logical operators

Logical expressions

• We have seen that the condition of a logical statement may be:

1. A comparison operation, or

2. Two comparison operations joined by && or ||

• More generally, a logical expression may be:

1. The Boolean literals true or false,

2. A local variable of type bool,

3. A comparison operation, or

4. Two logical expressions joined by && or ||

18
Logical operators

Logical expressions

• For example, our program may have:
bool is_valid{true};

bool is_found{false};

double x{};

double y{}

double z{};

// Do something...

if (is_valid || ((((x > 3) && (x < 12.5)) || (y < z)) && is_found)) {

// Do something specific to this condition

}

• In general, it will never be this complicated,
but it is just like an arithmetic expression:

u = a*((b + c)*d + e);

19
Logical operators

Logical expressions

• If there are many conditions that must be true,

you can string these together with &&:
if ((w > 0.0) && (x > 0.0) && (y > 0.0) && (z > 0.0)) {

// Do something specific to this condition

}

• If there are many conditions of which only one need be true,

you can string these together with ||:
if ((w > 0.0) || (x > 0.0) || (y > 0.0) || (z > 0.0)) {

// Do something specific to this condition

}

20
Logical operators

Logical expressions

• If you are mixing such conditions, use parentheses to be clear:
if (((x > 0.0) && (x < 1.0)) || ((y > 0.0) && (y < 1.0))) {

// Do something specific to this condition

}

• There is an order-of-operations for logical operations, but

– Most people don’t intuitively remember them

– You may get it wrong…

• Please, just use parentheses always when mixing || and &&

21
Logical operators

Multiple conditions

• For example, consider:

(x == 0) || (x <= 2) && (x >= 1)

• Does this mean:

(x == 0) || ((x <= 2) && (x >= 1))

or

((x == 0) || (x <= 2)) && (x >= 1)

– The first is true if x is 0 or x is in the closed interval [1, 2]

– The second is true only if x is in the closed interval [1, 2]

22
Logical operators

Logical expressions

• For example, our program may have:
int main() {

bool has_fever{};

bool has_dry_cough{};

bool is_tired{};

bool has_serious_symptom{};

std::cout << "Do you have a fever?" << std::endl;

std::cout << "Enter 1 (yes) or 0 (no): ";

std::cin >> has_fever;

std::cout << "Do you have a dry cough?" << std::endl;

std::cout << "Enter 1 (yes) or 0 (no): ";

std::cin >> has_dry_cough;

std::cout << "Are you more tired than usual?" << std::endl;

std::cout << "Enter 1 (yes) or 0 (no): ";

std::cin >> is_tired;

23
Logical operators

Logical expressions

std::cout << "Do you have any of:" << std::endl;

std::cout << "\tdifficulty breating," << std::endl;

std::cout << "\tchest pains, or" << std::endl;

std::cout << "\tloss of speech or movement?" << std::endl;

std::cout << "Enter 1 (yes) or 0 (no): ";

std::cin >> has_serious_symptom;

if(has_serious_symptom || (has_fever && has_dry_cough && is_tired)) {

std::cout << "Get medical help now." << std::endl;

} else if (has_fever || has_dry_cough || is_tired) {

std::cout << "Please self-isolate for two weeks and "

<< "seek medical help if the symptoms get worse."

<< std::endl;

} else {

std::cout << "You can go out, but wear a mask." << std::endl;

}

return 0;

}

24
Logical operators

Short-circuit evaluation

• C++ produces code that does the minimum work necessary:

– Suppose you wonder: Is the speaker taller than 6' and stupid?

• I tell you I’m 180 cm

– Instead, you may wonder: Does the speaker drink coffee or drink
tea?

• I tell you I drink coffee

25
Logical operators

Short-circuit evaluation

• Consider these logical expressions:

(x < -10) || (x > 10)

(x < -10) || ((x > -1) && (x < 1)) || (x > 10)

• Suppose that 'x' has the value -100

– The first comparison operation returns true

– Is there is any reason to even bother testing the others?

• No: the result of true || any-other-conditions must be true

– This is referred to as short-circuit evaluation

26
Logical operators

Short-circuit evaluation

• Consider these logical expressions:

(x < -10) || (x > 10)

(x < -10) || ((x > -1) && (x < 1)) || (x > 10)

• Suppose that 'x' has the value 0

– The first condition is false, and

• In the first example, (x > 10) is false and it is the last condition,
so the expression is false

• In the second example, ((x > -1) && (x < 1)) is true, so the
entire logical expression is true

– There is no need at this point to evaluate (x > 10)

– Even though it is false, the entire expression is still true

27
Logical operators

Short-circuit evaluation

• Similarly, consider

(x > -10) && (x < 10)

(x > -10) && ((x < -1) || (x > 1)) && (x < 10)

• Suppose that 'x' has the value -100

– The first comparison operation returns false

– Is there any reason to even bother testing the others?

• No: the result of false && any-other-conditions must be
false

28
Logical operators

Short-circuit evaluation

• Similarly, consider

(x > -10) && (x < 10)

(x > -10) && ((x < -1) || (x > 1)) && (x < 10)

• Suppose that 'x' has the value 0

– The first condition is true, and

• In the first example, (x < 10) is true and it is the last condition,
so the expression is true

• In the second example, ((x < -1) || (x > 1)) is false, so the
entire logical expression is false

– There is no need at this point to evaluate (x < 10)

– Even though it is true, the entire expression is still false

29
Logical operators

Short-circuit evaluation

• Suppose that x is a local variable:
if (((x >= -1.0) && (x <= 1.0)) || (x > 10.0) || (x < -10.0)) {

std::cout << "true" << std::endl;

} else {

std::cout << "false" << std::endl;

}

if ((x < -10.0) || (x > 10.0) || ((x <= 1.0) && (x >= -1.0))) {

std::cout << "true" << std::endl;

} else {

std::cout << "false" << std::endl;

}

• When do they stop evaluating the local variable x equals:

-12 -5 -1 7 15

30
Logical operators

Logical negation

• If a logical expression is true, its negation is false, and vice versa

– The unary NOT operator

• Consider, for example
if ((x > 0) && (x < 10)) {

std::cout << "'x' is in the open interval (0, 10)" << std::endl;

}

if (!((x > 0) && (x < 10))) {

std::cout << "'x' is not in the open interval (0, 10)" << std::endl;

}

x !x

true false

false true

31
Logical operators

Logical negation

• Note that all three are the same:
if (!((x > 0) && (x < 10))) {

std::cout << "'x' is not in the open interval (0, 10)" << std::endl;

}

if ((!(x > 0) || !(x < 10))) {

std::cout << "'x' is not in the open interval (0, 10)" << std::endl;

}

if ((x <= 0) || (x >= 10)) {

std::cout << "'x' is not in the open interval (0, 10)" << std::endl;

}

32
Logical operators

Logical negation

• The following Boolean-valued statements are equivalent1:

(x != 1) !(x == 1)

(x > 0) !(x <= 0)

(x >= -1) && (x <= 1) !((x < -1) || (x > 1))

1If the operands are the same, the result is the same.

33
Logical operators

Logical negation

• The behavior of these two conditional statements are equivalent:

if (some-condition) {

// Do something

} else {

// Do something completely different

}

if (!some-condition) {

// Do something completely different

} else {

// Do something

}

34
Logical operators

Summary

• Following this lesson, you now:

– Understand that two or more conditions can be chained together

• With a logical AND (&&), all must be true for the result to be true

• With a logical OR (||), one must be true for the result to be true

– Are familiarized with truth tables

– Understand the idea of short-circuit evaluation

• As soon as one condition is false in a chain of logical ANDs, we’re
done: the result must be false

• As soon as one condition is true in a chain of logical ORs, we’re
done: the result must be true

– Understand that logical negation switches between true and false

35
Logical operators

References

[1] No references?

36
Logical operators

Acknowledgements

• None so far.

37
Logical operators

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

38
Logical operators

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

